Ads banner

JE Banner Ads
Image 2

Question 1 - Ex 1.4 - Maths - Class X - SEBA

Without actually performing the long division, state whether the following rational numbers will have a terminating decimal expansion or a non-terminating repeating decimal expansion.

1. āĻĻীā§°্āϘ āĻšā§°āĻŖ āύāϕ⧰াāĻ•ৈ āϤāϞāϤ āωāϞ্āϞেāĻ– āϕ⧰া āĻĒā§°িāĻŽেāϝ় āϏংāĻ–্āϝাāĻŦোā§°ā§° āĻ•োāύāĻŦোā§°ā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āĻĒā§°িāϏāĻŽাāĻĒ্āϤ (āϏাāĻŦāϧি) āύাāχāĻŦা āĻ•োāύāĻŦোā§°ā§° āύিā§°āĻŦāϧি āĻĒৌāύ:āĻĒুāύিāĻ• āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āĻĨাāĻ•িāĻŦ āĻŦā§°্āĻŖāύা āϕ⧰া।

(i) \(\frac{13}{3125}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(3125 = 5 \times 5 \times 5 \times 5 \times 5\)

\(\because 2^0 \times 5^5\) āĻ…ā§°্āĻĨাā§Ž \(2^n5^m\) āφ⧰্āĻšিā§° āĻšā§Ÿ।

\(\therefore \frac{13}{3125}\) ā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āĻĒā§°িāϏāĻŽাāĻĒ্āϤ।


(ii) \(\frac{17}{8}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(8 = 2 \times 2 \times 2\)

\(\because 2^3 \times 5^0\) āĻ…ā§°্āĻĨাā§Ž \(2^n5^m\) āφ⧰্āĻšিā§° āĻšā§Ÿ।

\(\therefore \frac{17}{8}\) ā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āĻĒā§°িāϏāĻŽাāĻĒ্āϤ।


(iii) \(\frac{64}{455}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(455 = 5 \times 7 \times 13\)

\(\because 2^n 5^m\) āφ⧰্āĻšিā§° āύāĻšā§Ÿ।

\(\therefore \frac{64}{455}\) ā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āύিā§°āĻŦāϧি āĻĒৌāύ:āĻĒুāύিāĻ•।


(iv) \(\frac{15}{1600}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(1600 = 2^6 \times 5^2\)

\(\because 2^6 \times 5^2\) āĻ…ā§°্āĻĨাā§Ž \(2^n 5^m\) āφ⧰্āĻšিā§° āĻšā§Ÿ।

\(\therefore \frac{15}{1600}\) ā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āĻĒā§°িāϏāĻŽাāĻĒ্āϤ।


(v) \(\frac{29}{343}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(343 = 7 \times 7 \times 7\)

\(\because 2^n 5^m\) āφ⧰্āĻšিā§° āĻšā§Ÿ āύāĻšā§Ÿ।

\(\therefore \frac{29}{343}\) ā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āύিā§°āĻŦāϧি āĻĒৌāύ:āĻĒুāύিāĻ•।


(vi) \(\frac{23}{2^3 \cdot 5^2}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(\because 2^3 \times 5^2\) āĻ…ā§°্āĻĨাā§Ž \(2^n 5^m\) āφ⧰্āĻšিā§° āĻšā§Ÿ।

\(\therefore\) āĻ‡ā§Ÿাā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āĻĒā§°িāϏāĻŽাāĻĒ্āϤ।


(vii) \(\frac{129}{2^2 \cdot 5^7 \cdot 7^5}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(\because 2^n 5^m\) āφ⧰্āĻšিā§° āύāĻšā§Ÿ।

\(\therefore\) āĻ‡ā§Ÿাā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āύিā§°āĻŦāϧি āĻĒৌāύ:āĻĒুāύিāĻ•।


(viii) \(\frac{6}{15}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(15 = 3 \times 5\)

\(\because 2^n 5^m\) āφ⧰্āĻšিā§° āύāĻšā§Ÿ।

\(\therefore\) āĻ‡ā§Ÿাā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āύিā§°āĻŦāϧি āĻĒৌāύ:āĻĒুāύিāĻ•।


(ix) \(\frac{35}{50}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(50 = 2^1 \times 5^2\)

\(\because 2^1 \times 5^2\) āĻ…ā§°্āĻĨাā§Ž \(2^n 5^m\) āφ⧰্āĻšিā§° āĻšā§Ÿ।

\(\therefore\) āĻ‡ā§Ÿাā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āĻĒā§°িāϏāĻŽাāĻĒ্āϤ।


(x) \(\frac{77}{210}\)

āωāϤ্āϤ⧰ :

āĻ‡ā§ŸাāϤ,

\(210 = 2 \times 3 \times 5 \times 7\)

\(\because 2^n 5^m\) āφ⧰্āĻšিā§° āύāĻšā§Ÿ।

\(\therefore\) āĻ‡ā§Ÿাā§° āĻĻāĻļāĻŽিāĻ• āĻŦিāϏ্āϤৃāϤি āύিā§°āĻŦāϧি āĻĒৌāύ:āĻĒুāύিāĻ•।

Mathematics class 10 SEBA Lesson 1 Exercise 1.4 Question 1

1.4 Q.1 Maths Class 10 Solutions in assamese

Thumbnail

Post a Comment

0 Comments